

COMPOSITION OF CEREBRAL FLUIDS IN GOATS
ADAPTED TO HIGH ALTITUDE

Running head:

Cerebral fluids at high altitude

V. Fencl, R.A. Gabel, and D. Wolfe. Departments of Anaesthesia, Peter Bent Brigham Hospital and Harvard Medical School, Boston, Massachusetts 02115; and U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts 01760.

SE FILE COPY

Correspondence to:

V. Fencl, M.D.
Department of Anaesthesia
Peter Bent Brigham Hospital
721 Huntington Avenue
Boston, MA 02115

Tel: (617) 732-6738

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

REPORT DOCUMENTA		READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
м 6/79	era alla efaste sela sil	seast of Terrs (1991 Win 1)
. TITLE (and Subtitle)	AND DESCRIPTION OF THE PERSON	S. TYPE OF REPORT & PERIOD COVERED
Composition of Cerebral Fi	luids in Goats Adap-	6. PERFORMING ORG. REPORT HUMBER
. AUTHOR(a)	\$200.00 P. David S. Sanda & C. Sa	S. CONTRACT OR GRANT NUMBER(s)
O V. Fencl, R. A. Gabel	D. Wolfe	S. CONTRACT ON GRANT HUMBER(S)
PERFORMING ORGANIZATION NAME AND AL	DORESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
US Army Research Institute of	Environmental	THE RESIDENCE AND ADMINISTRATION OF THE PARTY OF THE PART
Medicine, Natick, MA 01760	167	3A1611Ø1A91C/ 94182022
1. CONTROLLING OFFICE NAME AND ADDRES	/ 11"	12. REPORT DATE
US Army Medical Research & Dev	relopment Command	23 Jan 79/
Fort Detrick		13. NUMBER OF PAGES
Frederick, MD 21701 14. MONITORING AGENCY NAME & ADDRESS(II	different from Controlling Office)	15. SECURITY CLASS. (of this report)
		BAT DOT
Same 14) USARIEM-M-	6/19	unclassified
1		154. DECLASSIFICATION DOWNGRADING
6. DISTRIBUTION STATEMENT (of this Report)		
		SOBOL THIEBSINGS TOLERS I LEVA
7. DISTRIBUTION STATEMENT (of the abetract	entered in Block 20, If different fro	m Report)
N/A		
8. SUPPLEMENTARY NOTES		
N/A		
9. KEY WORDS (Continue on reverse elde il nece	seary and identify by block number)	
CSF ·	ventriculo-cisterna	1 perfusions
cerebral interstitial fluid	ionic fluxes between	n CSF and brain
regulation of respiration		
The ionic composition of cerebines level (SL) and again after by measuring net transependyma.	ral ISF was explored 5 days at simulated 1 fluxes of HCO3, C1	in 6 unanesthetized goats at high altitude (HA) of 4,300 and lactate during ventri-
culo-cisternal perfusions with and [Cl]: concentration of an of that ion in the inflowing perfusion of the concentration of the concent	ion in cerebral ISF erfusate, that produc	is indicated by concentration es zero flux. Ventilatory
espectively, p<0.001), hyperve	blished (PacO ₂ 41.3 a	nd 34.3 torr at SL and HA,
espectively, p <u.uut), nyperv<="" td=""><td>entitation persisting</td><td>during acute hyperoxia</td></u.uut),>	entitation persisting	during acute hyperoxia

(PaO2 >250 torr). Mean cisternal-CSF pH was more alkaline at HA (7.322 vs. 7.300 at SL, p<0.001). At SL, zero transependymal flux of HCO2 and Cloccurred when the ventriculo-cisternal system was perfused with fluids with [HCO-] and [CI-] equal to those in the goat's own CSF. At HA, CI- flux again was zero when ([Cl] in perfusate and in the goat's own CSF were equal; however, for HCO3, zero flux occurred at HA when [HCO3] in perfusate was significantly lower (p<0.001) than in CSF. Mean negative transependymal flux (washout) of lactate was 16 times larger at HA than at SL (-0.147 vs. -0.009 HM) min; p<0.001). We conclude that, at SL, [HCO] and [Cl-] in CSF were the same as in cerebral ISF, which is in agreement with previously published findings. In goats adapted to HA, [Cl-] in cerebral ISF remained equal to [Cl-] in CSF, while [HCO] in cerebral ISF was demonstrably lower, and [lactate] presumably higher, than in CSF. The fluid surrounding the central chemoreceptors appears to be more acidic in goats acclimatized to HA than at SL, in spite of the alkalosis in cisternal CSF. This may contribute to ventilatory acclimatization to HA.

TIS G		X
ustif	nced cation	
y		
istri	bution	1
Avail	abilit	y Codes
ist	Avail spec	and/or
H		

The ionic composition of cerebral ISF was explored in 6 unanesthetized goats at sea level (SL) and again after 5 days at simulated high altitude (HA) of 4300 m, by measuring net transependymal fluxes of HOD, CI and lactate during ventriculo-cisternal perfusions with lactate-free artificial CSF with various (HCO3) and (C1-): concentration of an ion in cerebral ISF is indicated by concentration of that ion in the inflowing perfusate, that produces zero flux. Ventilatory acclimatization to HA was established (PaCO2 41.3 and 34.3 torr at SL and HA, respectively, p<0.001), hyperventilation persisting during acute hyperoxia (PaO2>250 torr). Mean cisternal-CSF pH was more alkaline at HA (7.322 vs. 7.300 at SL, p<0.001). At SL, zero transependymal flux of HCOZ and C1 occurred when the ventriculo-cisternal system was perfused with fluids with [HCO3] and [C1-] equal to those in the goat's own CSF. At HA, C1- flux again was zero when [C1] in perfusate and in the goat's own CSF were equal; however, for HCO3, zero flux occurred at HA when [HCO3] in perfusate was significantly lower (p<0.001) than in CSF. Mean negative transependymal flux (washout) of lactate was 16 times larger at HA than at SL (-0.147 vs. -0.009 $\mu\text{M}/$ min; p<0.001). We conclude that, at SL, [HOO3] and [C1] in CSF were the same as in cerebral ISF, which is in agreement with previously published findings. In goats adapted to HA, [Cl-] in cerebral ISF remained equal to [Cl-] in CSF, while [HCO] in cerebral ISF was demonstrably lower, and [lactate] presumably. higher, than in CSF. The fluid surrounding the central chemoreceptors appears to be more acidic in goats acclimatized to HA than at SL, in spite of the alkalosis in cisternal CSF. This may contribute to ventilatory acclimatization to HA.

Key words:

CSF

cerebral interstitial fluid
regulation of respiration
ventriculo-cisternal perfusions
ionic fluxes between CSF and brain

INTRODUCTION

Mechanisms responsible for ventilatory adaptation to high altitude (HA) are still in dispute (14). In 1963, Severinghaus et al (26) attributed the progressive hyperventilation to correction of the initial CSF alkalosis, brought about by lowering CSF [HCO3] through active transport of ions across the blood-brain barrier. This hypothesis, elegant in its simplicity, was later challenged by Dempsey and his colleagues. They found that CSF pH in humans (7,8,10) and ponies (19) was distinctly more alkaline after ventilatory adaptation to HA than at sea level (SL). Similar findings were subsequently obtained by Bureau and Bouverot in dogs (4) and by Weiskopf et al in humans (27). Recently, Crawford and Severinghaus (5) reinvestigated the ventilatory adaptation of humans to HA and concluded that the alkalosis seen in CSF was a reflection of the response of the peripheral chemoreceptors to hypoxemia, and of other ventilatory drives, including those from the central chemoreceptors responding to [H+] (the latter affected by local CNS tissue PCO2, which can vary with accompanying changes in local blood flow).

From studies in animals at SL several authors have concluded that the "central chemoreceptors" are located in the cerebral ISF, at some distance from the surface of the medulla, and not simply exposed to the cisternal CSF (3,12,21). It is therefore possible that in acclimatization to HA, the medullary chemoreceptors are responding to a [H+] that may not be the same as that reflected in [HCO $\frac{1}{3}$] and PCO $\frac{1}{2}$ of large-cavity CSF (14). Indeed, Davies (6) recently concluded that, in anesthetized dogs during three hours of hypoxia, the observed increase in ventilation correlated with increase in [H+], which was estimated for cerebral ECF at a chemosensitive area assumed to be located at a certain distance along a gradient of [HCO $\frac{1}{3}$] between CSF and blood.

The ionic composition of the cerebral ISF (including [H+]) in animals at SL has been shown to be the same as that in the large-cavity CSF (9). However, there is no information on the composition of the cerebral ISF in animals acclimatized to HA. The experiments to be described were done to explore the relationship between the ionic composition of CSF and that of the cerebral ISF in unanesthetized goats adapted to a simulated altitude of 4300 m. By perfusing the ventriculo-cistemal system with artificial CSF of variable ionic composition, net transependymal fluxes (9,21) were derived for HCO₃, C1- and lactate. The results indicate that in goats acclimatized to HA, [H+] in the fluid surrounding the central chemoreceptors is different from that seen in the cistemal CSF and appears to be acidotic enough to account for the hyperventilation observed in the acclimatized animals.

Methods

1. General

Nylon guide tubes were permanently implanted over the lateral ventricles and cisternae magnae in 6 goats (mean body weight 40 kg, range 33-48 kg) following the techniques described by Pappenheimer et al (22); the animals were also provided with skin-denervated carotid loops. Three to six weeks were allowed for healing and post-operative recovery. Before each experiment, the cerebral cavities were punctured through the guide tubes using needles of adjustable length, and a plastic cannula was percutaneously inserted into the carotid artery, without anesthesia.

Measurements were made of resting ventilation and CO₂ production while the goats inhaled room air; an anaerobic sample of cisternal CSF was obtained. Respiratory measurements were then repeated with inhalation of 100% O₂. Subsequently, the ventriculo-cisternal system of the animals was perfused with sterile artificial CSF with various ionic compositions while the goats were breathing room air (see below). All measurements were made twice, once while the animals were adapted to normal barometric pressure (50 m above SL), and again at simulated high altitude, after 5 days' adaptation.

2. Simulated high altitude

A hypobaric chamber with round-the-clock monitoring of pressure, temperature, and composition of air was used. The pressure was kept at 446 torr (range \pm 5 torr, corresponding to altitude of 4300 m), temperature at 21 \pm 1 C, and air flow such that FCO2 never exceeded 0.004. Lights were turned off at night. The goats moved freely in stalls similar to those in the regular animal quarters. They were fed regularly and had free access to water and

salt licks. The animals tolerated the 5-day stay in the chamber without any signs of discomfort.

3. Respiratory measurements

A latex rubber respiratory mask was snuggly fitted over the goat's snout. While wearing the mask, the animals appeared calm as they breathed air or O_2 through a low-resistance "triple J" valve having dead space 320 ml (Warren E. Collins, Inc.). During periods of breathing O_2 , the inspired gas was supplied from a Douglas bag. Concentration of CO_2 in expired gases was measured with an LB-2 infrared analyzer (Beckman Instruments, Inc.) or an MGA-1100A mass spectrometer (Perkin-Elmer Corp.) calibrated with gases analyzed with a Scholander apparatus. Volume of expired gas was measured with a Wedge Spirometer (Med-Science Electronics, Inc.). Arterial blood was sampled and \dot{c}_E and mixed-expired P_{CO_2} measured after a steady state in gas exchange had been reached, as judged by stability of the continuously-monitored mixed-expired P_{CO_2} and $P_{ET_{CO_2}}$. \dot{V}_A was calculated using Enghoff's modification of Bohr's formula for respiratory dead space.

4. Ventriculo-cisternal perfusions

The technique described by Pappenheimer et al (11,21,22) was applied. Ventricular inflow was controlled at 1.5 - 2.0 ml/min with a constant-flow infusion pump calibrated for each experimental day. The tip of the cisternal outflow tubing was kept at the level of the goat's external auditory meatus, the fluid collected aerobically in glass cylinders; volume was determined by weighing. Inflow pressures, recorded at the hub of the needle for ventricular inflow, and continuously monitored, were usually 3-4 cm H₂O higher than the pressure at the tip of the outflow tubing.

During each experimental day, perfusions were done with three fluids. One approximated the ionic composition of cisternal fluid of normal goats (22); it contained the following constituents (in mW/L): Na 150, K 2.8, Ca 1.3, Mg 0.8, Cl 128, HCO₃ 22, inorganic P 0.5. The other two fluids differed in the concentration of HCO₃, being 7-8 mM/L lower or higher than normal (about 15 and 28 mM/L, respectively) with complementary changes in [Cl]. Sterile solutions were prepared as described by Pappenheirer et al (11,22). To avoid precipitation of Ca and Mg carbonates, 5% CO₂ (balance O₂) was bubbled through the solutions for at least 1 hour before Ca and Mg salts were added. Osmolarity, measured with a model 2001 osmometer (Precisica System), was adjusted to 300 mOsm/L by adding sterile pyrogen-free water or 5% NaCl. Approximately 1 nanocurie of ³H-inulin, specific activity 160 m Curie/g (New England Nuclear), was added per 1 ml of perfusion fluid. Prior to infusion, the fluids were passed through sterile Millipore filters, pore size 0.22 µm (Millipore Corp.).

Before collecting fluids for analysis, each of the three different fluids was perfused through the goat's ventriculo-cisternal system until at least 75 ml of outflow was collected, which is about three times the volume needed to establish steady-state distribution of substances when the CSF system of goats is perfused (11). Outflow fluids were collected for analysis over 15 to 20 minutes. Most perfusions of a given composition were carried out twice, with sampling of arterial blood between the two collection periods.

Net transependymal fluxes of HCO3, Cl and lactate were calculated using equations derived by Pappenheimer et al (9,11,21,22):

$$\dot{n} = \dot{V}_i (c_i - c_f) - (\dot{V}_o + C_{In}) (c_o - c_f),$$

where \dot{n} = net flux of the ion ($\mu M/min$) between the perfusate and the cerebral ISF,

 \dot{V} = rate of flow of perfusion fluids (ml/min),

c = concentration of the ion (mM/kg H₂O),

i,o,f,p = subscripts referring respectively to inflow, outflow, freshly formed CSF and arterial plasma; f taken as equal to p (9),

 C_{In} = clearance of inulin from ventricular system $(\dot{V}_i c_i - \dot{V}_o c_o)/c_o$ (ml/min) (11).

The flux thus calculated is corrected both for the entry of the ion under consideration via bulk formation of CSF at the choroid plexus, and for exit of the ion via bulk reabsorption of CSF in arachnoid villi. Therefore, the transependymal flux of an ion represents the net passive exchange between the ventriculo-cisternal perfusate and the cerebral ISF, across the leaky ependyma in the ventricles and pia-glia on the cerebral surface. When transependymal flux of an ion is zero, the concentration of that ion in the inflowing perfusate indicates its concentration in the cerebral ISF (9).

5. Analytical techniques

 PCO_2 , PO_2 and pH in arterial blood and in CSF were measured at 37 C with standard PCO_2 and PO_2 electrodes (Radiometer A/S) and a Severinghaus pH electrode (23), using Radiometer electronics (model PHM 72 MK2). Corrections were made for body temperature (17,24). Precision buffers (Radiometer) and gases analyzed with Scholander apparatus for CO_2 and O_2 were used to calibrate the electrodes. CO_2 concentration (CCO_2) in CSF and in perfusion fluids was measured with the Natelson Microgasometer (Scientific Industries, Inc.). Samples of cisternal outflows, collected aerobically, were equilibrated for at least 25 minutes in a tonometer at 37 C with gas containing 5.5% CO_2 . Samples were

subsequently handled anaerobically while being analyzed for pH and COO2. Bicarbonate concentrations in blood plasma, CSF, and perfusates were calculated from measured pH and PCO2, or COO2 using published balues for pK' and CO2 solubilities (17,24). Chloride in CSF, in perfusion fluids, and in anaerobically separated blood plasma was determined by potentiometric titration (Aminco-Cotlove, American Instrument Co.). Lactate was determined in whole blood, CSF, and perfusion fluids with an enzymatic technique (Sigma Chemical Co.). Concentration of ³H-inulin in perfusion fluids was measured with a three-channel Packard Tricarb Liquid Scintillation Spectrometer, Model 3385 (Packard Instruments Co.). A 0.5 ml sample was mixed with 10 ml of Beckman Ready-solv GP solution (Beckman Instruments). Quenching was corrected for by means of an external standard. Efficiency for tritium counting was 60 percent.

When calculating transependyma1 fluxes, concentrations of HCO² and Cl², determined as mM/L of plasma, were converted to molality (mM/kg H₂O) by dividing by 0.93 (9). Lactate, determined in mM/L of whole blood, was converted to molality (mM/kg H₂O in whole blood) by dividing by 0.804 (2). Following Huckabee's recommendations (13) we assumed that lactate was evenly distributed between RBC and plasma water. In CSF and in the protein-free perfusion fluids, concentrations in mM/L were applied in calculations of fluxes; correcting for molality was deemed insignificant.

6. Statistical analyses

Statistical significance was determined by the Student t-test for paired samples, or by independent t-test, as applicable. Linear regression analysis was performed with evaluation of parameters of the lines by F-test (1).

Results

1. Respiratory adaptation to simulated high altitude

Table 1 summarizes respiratory data obtained in the goats at SL and after 5 days at simulated HA. Mean \dot{V}_{CO_2} did not change appreciably. Mean resting \dot{V}_A , during air breathing, increased with accliratization from a sea-level value of 2.9 to 3.9 1/min., BTPS (p<0.001); concomitantly, mean PaCO₂ decreased from 41.3 to 34.3 torr (p<0.001). The hyperventilation at HA persisted during acute hyperoxia (PaO₂ > 250 torr): \dot{V}_A was higher, and PaCO₂ lower, after 5 days at HA, than at SL (4.0 and 3.1 1/min., BTPS, p<0.02; 38.5 and 42.6 torr, p<0.02).

Data on arterial blood sampled while the goats were quietly breathing room air are presented in Table 2. PaO₂, as expected, was reduced from its mean value of 104.4 torr at SL to 42.6 torr after 5 days at simulated HA (p<0.001). [HCO3] in plasma decreased from the mean sea-level value of 29.1 mWL to 23.2 mWL (p<0.02). Mean [Cl⁻] in plasma increased from 105.9 to 111.5 mW1 (p<0.01). Concentration of lactate in whole blood was 0.6 mWL at SL and 1.2 mWL at HA (a statistically insignificant difference). These changes in the ionic composition of arterial blood, together with the observed decrease in PaCO₂, resulted in a small increase in arterial-blood pH of about 0.01 units at HA which was not statistically significant.

2. Composition of CSF (Table 3)

There was a statistically significant alkaline shift in the goats' cisternal CSF after 5 days at PB ~446 torr: mean pH increased from 7.300 at SL to 7.322 at HA (p<0.001), in spite of a significant increase in CSF [C1-] and [Lactate], and a decrease in [HCO3]. The mean change in CSF

[HCO $_3$] was -3.8 \pm 0.5 mM/L (\pm S.E.); this was stoichiometrically matched by a mean combined change in [C1] + [Lactate] of + 3.6 \pm 0.4 mM/L. The alkaline shift in cisternal CSF was thus produced by a marked decrease in P ∞_2 , from 47.2 torr at SL to 38.9 torr at HA (p<0.001).

3. Transependymal fluxes of ions

In 6 goats, complete sets of data needed for computation of transependymal fluxes for HCO₃ were obtained 25 times at SL and 22 times at HA; for Cl⁻, 24 times at SL and 17 times at HA. For lactate, data were obtained in only 4 goats, 17 times both at SL and HA. Detailed data are available from tables deposited with the National Auxiliary Publications Service of ASIS.

Figures 1 and 2 show net transependymal fluxes of HCO₃ and C1- plotted against the differences in the concentrations of these ions between the various ventricular inflows and the goat's own CSF (Δ[HCO₃] and Δ[C1-]); if this difference equals zero, the concentration of the ion in the fluid entering the ventricles is equal to that in the goat's own CSF. Arbitrarily, positive flux means uptake of the ion from the perfusate into cerebral ISF; negative flux means washout of the ion from cerebral ISF into the perfusate.

When the concentration of C1- or HCO $_3$ in the perfusate exceeded that in the goat's own CSF, the flux of the ion was positive, i.e. into the brain. The dashed and full-drawn lines represent least-square linear regressions derived from the data at SL and at HA, respectively. Parameters for these regression lines are given in Table 4. The y-intercepts (a) are statistically indistinguishable from zero for HCO $_3$ fluxes at SL, and for C1- fluxes at both SL and HA. However, for the transependymal flux of HCO $_3$ at HA, this intercept is significantly different from zero (p<0.001). Thus, in goats at SL, when the

concentration of HCO_3^2 or of C1° in the inflowing perfusate equals that in the goat's CSF ($\Delta[C1^-] = 0$, $\Delta[HCO_3^-] = 0$, Figures 1 and 2), transependyral flux is also zero. However, in our goats adapted to HA, there was a significantly positive transependymal flux of HCO_3^- (2.58 ± 0.28 μ M/min, p<0.001) when $\Delta[HCO_3^-]$ equalled zero (Figure 1, Table 4). The condition for zero flux of HCO_3^- was fulfilled only when $[HCO_3^-]$ in the inflowing perfusate was significantly (p<0.001) lower than $[HCO_3^-]$ in the goat's own CSF; the estimate of the x-intercept is -6.1 μ M/L (-4.1 and -3.6 μ M/L being the upper 95 and 99% tolerance limits, respectively, for x at y = 0).

All perfusion fluids were prepared free of lactate; therefore, analysis of the calculated transependymal fluxes for lactate, analogous to that shown in Figures 1 and 2 for HCO_3^- and CI^- , was not possible. Lactate flux could be calculated, however, by setting the inflow concentration equal to zero (see Methods). The transependymal flux of lactate did not vary systematically while the ventriculo-cisternal system was being perfused with solutions of various $[HCO_3^-]$ and $[CI^-]$ at SL or HA. The mean (\pm S.E.) of all lactate fluxes measured at SL was $-0.09 \pm 0.04 \, \mu\text{M/min}$ which was significantly different from zero (p<0.05); after adaptation to HA the mean transependymal washout of lactate $(-1.47 \pm 0.17 \, \mu\text{M/min})$ was significantly larger (p<0.001).

Discussion

Our data show that ventilatory acclimatization to HA was established in the goats after 5 days at P_B ~446 torr, findings analogous to those of Mines and Sørensen (16), Lahiri et al (15), and Morrill and Kellogg (18), in this species. In the arterial blood, hypoxic hypocapnia prevailed, with almost complete renal compensation of the respiratory alkalosis. In the cisternal CSF, however, pH was distinctly more alkaline at HA than at SL. This is similar to findings in ponies (19), dogs (4), and humans either in lumbar (5,7,8, 10,27) or cisternal (27) CSF.

The mean difference (±S.E.) in PCO2 between CSF and arterial blood was reduced from the sea-level value of 6.1 \pm 0.6 torr to 3.6 \pm 1.1 at HA (p<0.001). This does not necessarily indicate an increase in cerebral blood flow (CBF) at HA because the blood ${\rm CO}_2$ dissociation curve is steeper at lower values of ${\rm P}_{{\rm CO}_2}$ (5). Crawford and Severinghaus (5) expressed the CSF-to-arterial gradient in PCO2 as a ratio, CSF PCO2/PaCO2, to circumvent the nonlinearity of the blood dissociation curve. They interpreted changes in this ratio to indicate reciprocal changes in CBF, assuming that the CSF-to-arterial PCO2 ratio remains proportional to the cerebral venous-to-arterial P_{∞_2} ratio (and that the cerebral C_2 production does not change markedly). In our observations, the mean (±S.E.) values of CSF $P_{\infty_2}/P_{\alpha_{\infty_2}}$ were 1.149 \pm 0.018 at SL, and 1.102 \pm 0.038 after 5 days at HA, a change suggesting increase in CBF (statistically insignificant). If the above assumptions apply to our goats, we would conclude that, in spite of the low Pacco, CBF was not lowered after adaptation to HA, and it might even have increased somewhat, a conclusion similar to the findings in human sojourners at HA (25), and in rats after 24 hours of hypoxic hypocapnia (20).

The ventriculo-cisternal perfusions with artificial CSF of variable [HCO3]

and [C1-] were performed to establish the relation between the concentrations of these ions in CSF and in the cerebral ISF. Net transependymal fluxes, corrected both for entry of an ion by bulk formation of CSF and for exit of the ion by bulk absorption of CSF in choroid villi, represent passive exchange across the leaky ependyma in the ventricles and across the pia-glia on the cerebral surface (9,11,21). When there is a concentration gradient for an ion between the cerebral ISF and the fluid perfusing the large cavities, there is a measurable transependymal flux; if net flux is zero, there is no such concentration gradient. Therefore, when there is zero transependymal flux, the concentration of the ion under consideration in the inflow perfusate indicates the concentration of that ion in the cerebral ISF (9).

We found zero net transependymal flux of HCO_3^- and Cl^- when the ventriculocisternal system of goats at SL was perfused with fluids having concentrations of these ions equal to those in the goat's own CSF ($\Delta[HCO_3^-]$ and $\Delta[Cl^-]$ equal to zero, Figures 1 and 2). Therefore, we conclude that at SL, $[HCO_3^-]$ and $[Cl^-]$ in CSF were the same as in the cerebral ISF. This is in agreement with previous findings in goats at SL, either in normal acid-base balance or in steady acid-base disturbances of non-respiratory origin (9). After acclimatization to HA, net transependymal flux of Cl⁻ again was zero when $[Cl^-]$ in the perfusion fluid equalled that in the CSF of acclimatized goats. Thus, we conclude that in goats adapted to HA, $[Cl^-]$ in CSF remained equal to $[Cl^-]$ in cerebral ISF. In contrast, $[HCO_3^-]$ flux was significantly positive (flux into the brain tissue) when the perfusate had the same $[HCO_3^-]$ as that in the goats own CSF ($\Delta[HCO_3^-]$) = 0, Figure 1). For a positive net transependymal flux of $[HCO_3^-]$ to occur, a gradient of $[HCO_3^-]$ had to exist, with a lower concentration in the train tissue than in the perfusate. For zero flux of HCO_3^- to occur in goats acclimatized to HA,

[HCO₃] in the perfusate had to be lower than in CSF sampled from that goat. We therefore conclude that in goats adapted to HA, [HCO₃] in cerebral ISF was demonstrably lower than in CSF.

These findings suggest that in goats adapted to HA, there exists a steadystate concentration gradient of [HCO3], and not of [C1-], between CSF and
cerebral ISF, across the leaky ependyma and pia glia, with a lower [HCO3] in
cerebral ISF than in CSF. This may be, at least in part, owing to a concentration gradient of lactate going in the opposite direction. The latter notion is
corroborated by the finding that the mean negative transependymal flux of lactate
(washout of lactate), measured in 4 of our goats, was more than 16 times greater
at HA than at SL.

From animal experiments involving respiratory measurements during ventriculocisternal perfusions with fluids of abnormal ionic composition (3,12,21), it has
been concluded that the "central chemoreceptors" are located in the cerebral ISF,
at some distance from the surface of the medulla. In cats, this distance was
estimated by Berndt et al to be 200-400 µm (3). In goats with the ventriculocisternal system perfused with artificial CSF of abnormal $[HCO_3]$, the location of
the central chemoreceptors was estimated by Pappenheimer et al (21) to be 3/4along the concentration gradient of HCO_3 between the fluid present in cisterna
magna and that ascribed to the cerebral extracellular space. If we apply this
model to our data, then $[HCO_3]$ in the fluid surrounding the central chemoreceptors
in goats acclimatized to HA would be 3/4 the distance along the gradient between $[HCO_3]$ in cisternal CSF (19.6 mM/L), Table 3) and that assigned to the cerebral
ISF (19.6 - 6.1 = 13.5 mM/L), Figure 1). Taking the mean CSF PCO_2 (Table 3) as
a measure of the prevailing cerebral-tissue PCO_2 , PH in the fluid surrounding
the medullary chemoreceptors (PH_T) would be equal to $6.13 + log [0.75 \times 13.5$

+ 0.25 x 19.6)/0.031 x 38.9] = 7.23. If a cerebral-ISF [HCO_3] corresponding to the upper 95% tolerance limit (cisternal [HCO_3] minus 4.1 mM/L), as predicted from data in Figure 1 and Table 4, were taken for this estimate of pH_r, the value would be 7.27. Both these estimates give pH values acidotic compared to SL, where pH in the fluid surrounding the central chemoreceptors should be equal to that measured in cisternal CSF, 7.30 (Table 3), since at SL, no gradient for [HCO_3] was found between CSF and ISF in the present or previous (9) experiments.

We conclude that the fluid surrounding the "central chemoreceptors" is more acidic in goats acclimatized to HA, than at SL, in spite of the alkalosis in cisternal CSF. This may contribute to the ventilatory acclimatization of the animals. This conclusion is similar to that of Davies (6), although it is derived from a different experimental approach, and is based on less indirect assumptions. Our conclusions are also compatible, at least in part, with those of Crawford and Severinghaus (5), which state that ventilatory drives other than those from peripheral chemoreceptors or those ascribed to the effect of [H+] in bulk CSF are contributing to ventilatory acclimatization to HA.

ACKNOWLEDGMENTS

We thank Dr. Richard B. Weiskopf for his contribution in the planning of the study, Dr. M. deM. Fencl for making facilities for radioactive counting available, and Dr. Henry Feldman for statistical analyses. The excellent technical support of Vincent Forte and Nancy McGavock throughout the study, and of Ellen Beekman, Stephen Blythe, Genevieve Farese, Philip Oliver, Gordon Rogowitz, and George Volpe during various phases of the study, is gratefully acknowledged.

This study was supported in part by NIH grant GM 15904.

Presented in part at the 63rd FASEB Annual Meeting, 6-10 April, 1979, Dallas, Texas.

In conducting the research described in this report, the investigators adhered to the 'Guide for the Care and Use of Laboratory Animals,' as promulgated by the Committee on Revision of the Guide for Laboratory Animal Facilities and Care of the Institute of Laboratory Animal Resources, National Research Council.

The views, opinions, and/or findings contained in this report are those of the authors and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation.

References

- Acton, F.S. <u>Analysis of Straight-line Data</u>. New York: Dover Publications, 1959.
- Altman, P.L., and D.S. Dittmer (Eds). <u>Blood and Other Body Fluids</u>.
 Washington, D.C. Federation of American Societies for Experimental Biology, 1961.
- Berndt, J., W. Berger, K. Berger, and M. Schmidt. Untersuchungen zum zentralen chemosensiblen Mechanismus der Atmung. II. Die Steuerung der Atmung durch das extracelluläre pH im Gewebe der Medulla oblongata. <u>Pflügers Arch</u>. 353: 146-170, 1972.
- Bureau, M., and P. Bouverot. Blood and CSF acid-base changes, and rate of ventilatory acclimatization of awake dogs to 3550 m. Respir. Physiol. 24: 203-216, 1975.
- Crawford, R.D., and J.W. Severinghaus. CSF pH and ventilatory acclimatization to altitude. <u>J. Appl. Physiol.: Respirat. Environ. Exercise Physiol.</u> 45: 275-283, 1978.
- Davies, D.G. Evidence for cerebral extracellular fluid [H+] as a stimulus during acclimatization to hypoxia. Respir. Physiol. 32:167-182, 1978.
- Dempsey, J.A., H.V. Forster, and G.A. doPico. Ventilatory acclimatization to moderate hypoxemia in man. J. Clin. Invest. 53:1091-1100, 1974.
- Dempsey, J.A., H.V. Forster, N. Gledhill, and G.A. doPico. Effects of moderate hypoxemia and hypocapnia on CSF [H+] and ventilation in man. J. Appl. Physiol. 38:665-674, 1975.
- Fencl, V., T.B. Miller, and J.R. Pappenheimer. Studies on the respiratory response to disturbances of acid-base balance, with deductions concerning the ionic composition of cerebral interstitial fluid. <u>Am. J. Physicl.</u> 210:459-472, 1966.

- Forster, H.V., J.A. Dempsey, and L.W. Chosy. Incomplete compensation of CSF [H+] in man during acclimatization to high altitude (4500 m). J. Appl. Physiol. 38:1067-1072, 1975.
- Heisey, S.R., D. Held, and J.R. Pappenheimer. Bulk flow and diffusion in the cerebrospinal fluid system of the goat. <u>Am. J. Physiol.</u> 205: 775-781, 1962.
- Hori, T., G.I. Roth, and W.S. Yamamoto. Respiratory sensitivity of rat brain-stem surface to chemical stimuli. <u>J. Appl. Physiol.</u> 28:721-724, 1970.
- 13. Huckabee, W.E. Control of concentration gradients of pyruvate and lactate across cell membranes in blood. J. Appl. Physiol. 9:163-170, 1956.
- 14. Kellogg, R.H. Oxygen and carbon dioxide in the regulation of respiration. Federation Proc. 36:1658-1663, 1977.
- Lahiri, S., N.S. Cherniack, N.H. Edelman, and A.P. Fishman. Regulation of respiration in goat and its adaptation to chronic and life-long hypoxia. <u>Respir. Physiol.</u> 12:388-403, 1971.
- Mines, A.H., and S.C. Sørensen. Ventilatory responses of awake normal goats during acute and chronic hypoxia. <u>J. Appl. Physiol.</u> 28:826-831, 1970.
- Mitchell, R.A., D.A. Herbert, and C.T. Carman. Acid-base constants and temperature coefficients for cerebrospinal fluid. J. Appl. Physiol. 20:27-30, 1965.
- Morrill, C.G., and R.H. Kellogg. The effect of graded hypoxia with and without exercise on ventilatory acclimatization. <u>Respir. Physiol.</u> 14:287-295, 1972.

- Orr, J.A., G.E. Bisgard, H.V. Forster, D.D. Buss, J.A. Dempsey, and J.A.
 Will. Cerebrospinal fluid alkalosis during high-altitude sojourn in unanesthetized ponies. Respir. Physiol. 25:23-37, 1975.
- Pannier, J.L., and I. Leusen. Circulation to the brain of the rat during acute and prolonged respiratory changes in the acid-base balance.
 Pflügers Arch. 338:347-359, 1973.
- 21. Pappenheimer, J.R., V. Fencl, S.R. Heisey, and D. Held. Role of cerebral fluids in control of respiration as studied in unanesthetized goats. Am. J. Physiol. 208:436-450, 1965.
- 22. Pappenheimer, J.R., S.R. Heisey, E.F. Jordan, and J. deC. Downer. Perfusion of the cerebral ventricular system in unanesthetized goats. Am. J. Physiol. 203:763-774, 1962.
- 23. Severinghaus, J.W. Design of capillary pH electrode incorporating an open liquid junction and reference electrode in a single unit. <u>Scand. J. Clin.</u> <u>Lab. Invest.</u> 17:614-616, 1965.
- 24. Severinghaus, J.W. Blood gas calculator. <u>J. Appl. Physiol.</u> 21:1108-1116, 1966.
- 25. Severinghaus, J.W., H. Chiodi, E.I. Eger II, B. Brandstater, and T.F. Hornbein. Cerebral blood flow in man at high altitude. <u>Circulation Res.</u> 19:274-282, 1966.
- 26. Severinghaus, J.W., R.A. Mitchell, B.W. Richardson, and M.M. Singer.
 Respiratory control at high altitude suggesting active transport regulation of CSF pH. J. Appl. Physiol. 18:1155-1166, 1963.
- 27. Weiskopf, R.B., R. A. Gabel, and V. Fencl. Alkaline shift in lumbar and intracranial CSF in man after 5 days at high altitude. J. Appl. Physicl. 41:93-97, 1976.

TABLE 1

RESPIRATORY ADAPTATION OF COATS AFTER 5 DAYS AT SIMULATED HIGH ALTITUDE (4300m).

Means ± S.E.

1.0	n=5 Sea Level High Altitude	164 ± 19 169 ± 10 N.S.	5.1 ± 0.2 4.0 ± 0.4 $p<0.02$	42.6 ± 2.0 38.3 ± 1.1 p<0.02
0.21	n=6 Sea Level High Altitude	151 ± 14 152 ± 10 N.S.	2.9 \pm 0.1 3.9 \pm 0.2 p<0.001	41.3 ± 1.3 34.3 ± 1.2 $p<0.001$
FIO2		VCO2 ml/min. STPD	VA L/min. BTPS	PaCO ₂ torr

TABLE 2

ARTERIAL BLOOD AT SEA LEVEL AND AFTER 5 DAYS AT SIMULATED HIGH ALTITUDE (4300 m)

Data on 6	Data on 6 goats breathing room air		Means + SE
	Sea Level	High Altitude	Statistical Significance [§]
PO2, torr	104.4 ± 2.5	42.6 ± 2.3	p<0.001
P ₀₀₂ , torr	41.3 ± 1.3	34.3 ± 1.2	p<0.001
Hq	7.438 ± 0.015	7,449 ± 0,015	N.S.
[HCO3], mW/L plasma	29.1 ± 1.4	23.2 ± 0.5	p<0.02
[Cl ⁻], mW/L plasma	105.9 ± 1.0	111.5 ± 0.5	p<0.01
[Lactate], mW/L whole blood	0.6 ± 0.1*	1.2 ± 0.2#	N.S.+

* data on 3 goats

data on 4 goats

s t-test for paired samples

f t-test for means of unpaired samples

TABLE 3

CISTERNAL CSF AT SEA LEVEL AND AFTER 5 DAYS AT SIMULATED HIGH ALTITUDE (4300 m)

Means ± S.E.	High Altitude Statistical Significance#7.322 ± .006 p<0.001	38.9 ± 1.1 p<0.001	19.6 ± 0.4 p<0.001	130.3 ± 0.5 p<0.02	0.1
Data on 6 goats breathing room air	Sea Level 7.300 ± .009 7.32	47.2 ± 1.2 38.9	23.3 ± 0.5 19.6	128.4 ± 0.6 130.3	2.9 ± 0.1 4.2 ± 0.1
Data	pl1	PCO ₂ torr	[HCO]	[C1-] mV/L	[Lactate]* 2

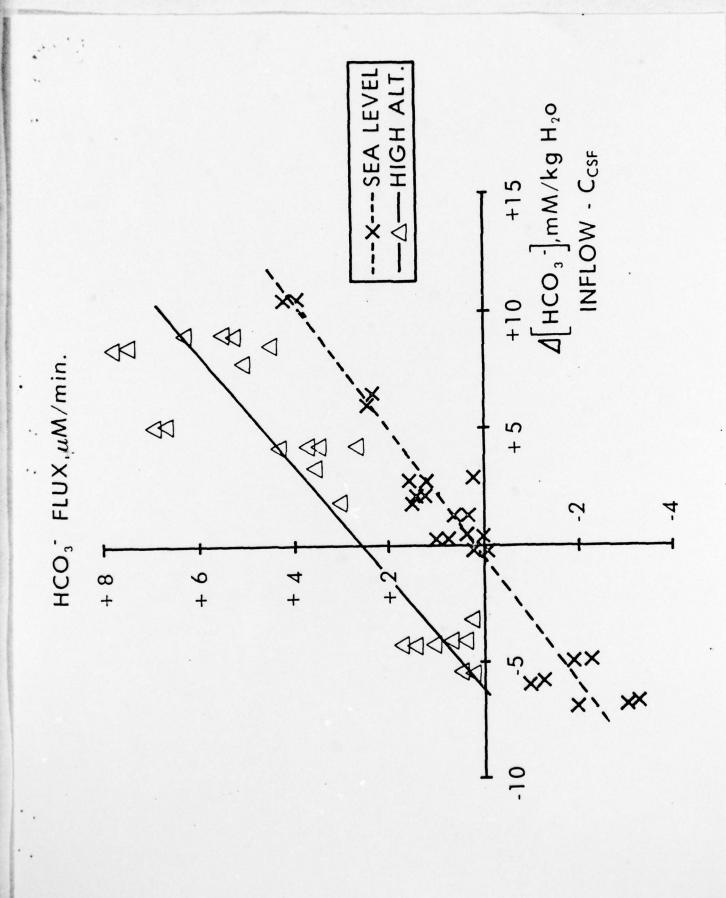
* data on 4 goats

t-test for paired samples

Table 4

Parameters (±S.E.) of regression lines relating net transependymal fluxes of ions (HCO \bar{s} and Cl-) to the concentration of the ion in the inflow perfusate (c_i) and that in the goat's CSF (c_{csf}). Data shown in Figures 1 and 2.

Correlation	coefficient	(r)	06.0		0.94	
c _i - c _{csf})	Slope (ml/min)	(q)	0.37 ± 0.02 0.42 ± 0.05		0.36 ± 0.03 0.40 ± 0.04	
Net ion flux = $a + b(c_i - c_{csf})$	Intercept (mM/kg H ₂ 0) Slope (ml/min)	(a)	0.22 ± 0.11 * 2.58 ± 0.28 †		-0.10 ± 0.22 * -0.14 ± 0.23 *	
	п		25		. 24	
		HCO3 flux	Sea level High altitude	C1-flux	Sea level High altitude	


* Statistically indistinguishable from zero.

+ Significantly different from zero (p<0.001; F-test). Value of x at y = 0 is -6.1 mW/kg $\rm H_2O$, with upper 95% tolerance limit of -4.1 mW/kg $\rm H_2O$.

Legends to Figures

- Net transependymal fluxes of HCO₃ in goats adapted to sea level and to high altitude. Fluxes are plotted against the bicarbonate concentration difference between the inflowing perfusate, and the goat's CSF under the two conditions of respiratory adaptation. The straight lines are least-squares linear regressions; see Table 4 for paramaters of the regression lines.
- Net transependymal fluxes of Cl in goats adapted to sea level and high altitude. The plots are analogous to those for HCO3 fluxes shown in Figure 1.

+10 +15 **4**[CI⁻] mM/kg H₂O INFLOW - C_{CSF} CI FLUX, M/min. +8 -- SEA LEVEL -- HIGH ALT.

V. Fencl, R.A. Gabel, and D. Wolfe: Composition of cerebral fluids in goats adapted to high altitude.

SEA LINE

Herost, ref. Hero			_						
		350	235	0.00	0.00	0.03	0.08		
	QUANTITIES	Lace	130 PKE				888888		
Hardellin quantities		ū.	H H	5.7	6.6.2.1.	1955	2005		5775.
1.932 14.03 14.04 10.1 10.1 14.04 10.1 10.			120 H		115.0 115.0 115.0		112.9	117.2 118.3 119.3	115.0
Heart Hear			Ci-Cosf		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	776677	
Heart Hear	CATED		Flux	6.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	111111	8.0. 1.5.	0.0		2.1.0
1.932 24.0 24.3 27.5 24.4 136.5 133 108.5 129 0.76 0.60 2.61 870 780 0.319 2.255 24.0 24.3 27.5 24.4 136.5 133 108.5 129 0.76 0.60 2.61 870 780 0.319 2.255 24.0 24.3 27.5 24.4 136.5 133 108.5 129 0.76 0.60 2.61 870 780 0.319 2.255 24.0 24.3 27.5 24.0 24.3 27.5 24.0 24.3 27.5 24.0 24.0 24.3 27.5 24.0 24.3 27.5 24.0 24.3 27.5 24.0 24.3 27.5 24.0 24.3 27.5 24.0 24.3 27.5 24.0 24.3 27.5 24.0 24.3 27.5 24.0 24.3 27.5 24.0 24.3 27.5 24.0 24.3 27.5 24.0 24.3 27.5 24.0 24.3 27.5 24.0 24.3 27.5 24.0 24.3 27.5 24.0 24.3 27.5 24.0 24.3 27.5 24.0 24.3 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5	CNA	HOOF		29.55	22 22 22 29 29 29 29 29 29 29 29 29 29 2	28.7 28.7 28.7 28.7 27.0 27.0	22.25 25.25 25.65 25.65 25.65	27.0 27.0 25.7 25.7 27.5 27.5	28.5 27.2 27.2 28.3
Heart Hear		-	CI-CCSF RWNE H20	446667	2.5.0 2.5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	.0.2 .0.2 .6.8 .10.5		22.002.2	77004
1.914 25.7 25.1 25.0 25.7 25.1		Cin ml/mir		0.319 0.150 0.034 0.051 0.061	0.036 0.036 0.030 0.100 0.095	0.252 0.055 0.072 0.098 0.377	0.236 0.224 0.092 0.092 0.009	0.166	0.070 0.050 0.164 0.130
1.932 24.0 24.3 27.5 24.4 136.5 133 108.5 129 0.76 0.60 2.61 870 2.194 25.7 25.1 26.7 2.105 17.5 19.5 27.5 24.4 136.5 132 108.5 129 0.75 0.60 2.61 870 2.106 17.5 19.5 27.5 24.4 136.5 132 108.5 129 0.75 0.60 2.61 870 2.106 17.5 19.5 27.5 24.4 136.5 132 108.5 129 0.75 0.60 2.61 870 2.106 17.5 19.5 27.5 24.0 136.5 132 108.5 129 0.75 0.60 2.61 870 2.106 17.5 19.5 27.5 24.4 136.5 132 108.5 129 0.75 0.60 2.61 870 2.106 17.5 19.5 27.5 140 137 108.5 129 0.75 0.60 2.61 870 2.107 17.5 19.5 27.1 26.7 127 126 107 127.4 0.83 0.64 2.97 912 2.007 127.1 26.7 127 127 127 127 127 127 126 107 127.4 0.83 0.64 2.97 912 1.85 1		57	8	780 758 831 837 756	830 762 8840 808 798	2212262	25 25 25 25 25 25 25 25 25 25 25 25 25 2	757 758 708 708 710 710	\$8.3E
Herchard		Inulia cpm/ml	5	870 870 882 882 911	932 932 924 924 898		807 742 752 752 752	850 88.11 790 790	1545 1665 1565 157 172 173 173
Herchard		WL	SF	3	76.	.03	68		
1.932 24.0 24.3 27.5 24.4 136.5 133 108.5 129 0.77 2.135 24.0 24.3 27.5 24.4 136.5 133 108.5 129 0.77 2.135 21.0 24.3 27.5 24.4 136.5 133 108.5 129 0.77 2.135 21.0 24.3 27.5 24.4 136.5 133 108.5 129 0.77 2.135 21.0 24.3 27.5 24.4 136.5 133 108.5 129 0.77 2.135 21.0 24.3 27.5 24.4 136.5 133 108.5 129 0.77 2.135 21.0 24.3 27.5 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8									
1.932 24.0 24.3 27.5 24.4 136.5 133 108.5 2.34 24.0 24.5 24.0 24.3 27.5 24.4 136.5 132 108.5 2.30 2.30 2.30 2.30 2.30 2.30 2.30 2.30				66666			7,99,9		
1.932 24.0 54.5 52.18 1.932 24.0 24.3 27.5 24.4 2.342 24.0 24.3 27.5 24.4 2.342 24.0 24.3 27.5 24.4 2.352 21.0 17.5 19.2 27.5 2.107 17.5 19.2 27.5 2.177 25.1 26.8 2.177 25.1 26.8 2.177 25.7 25.1 26.0 1.81 29.3 7.2 22.7 1.85 25.2 27.0 26.7 25.0 2.054 25.5 30.8 25.2 1.957 35.5 30.8 25.2 2.023 22.7 22.7 25.5 22.8 2.023 22.7 22.7 25.5 22.8 2.023 22.7 22.7 25.5 22.8 2.023 22.7 22.7 25.5 22.8 2.023 22.7 22.7 25.5 22.8 2.023 22.7 22.7 25.5 22.8 2.035 22.7 22.7 25.5 22.8 2.037 16.8 - 23.9	S		SS		127.	126.	8.1	129	129
1.932 24.0 54.5 52.18 1.932 24.0 24.3 27.5 24.4 2.342 24.0 24.3 27.5 24.4 2.342 24.0 24.3 27.5 24.4 2.352 21.0 17.5 19.2 27.5 2.107 17.5 19.2 27.5 2.177 25.1 26.8 2.177 25.1 26.8 2.177 25.7 25.1 26.0 1.81 29.3 7.2 22.7 1.85 25.2 27.0 26.7 25.0 2.054 25.5 30.8 25.2 1.957 35.5 30.8 25.2 2.023 22.7 22.7 25.5 22.8 2.023 22.7 22.7 25.5 22.8 2.023 22.7 22.7 25.5 22.8 2.023 22.7 22.7 25.5 22.8 2.023 22.7 22.7 25.5 22.8 2.023 22.7 22.7 25.5 22.8 2.035 22.7 22.7 25.5 22.8 2.037 16.8 - 23.9	WITHE		g.	108.5	107	102 102 103	105	9 11 10	108
1.932 24.0 54.5 52.18 1.932 24.0 24.3 27.5 24.4 2.342 24.0 24.3 27.5 24.4 2.342 24.0 24.3 27.5 24.4 2.352 21.0 17.5 19.2 27.5 2.107 17.5 19.2 27.5 2.177 25.1 26.8 2.177 25.1 26.8 2.177 25.7 25.1 26.0 1.81 29.3 7.2 22.7 1.85 25.2 27.0 26.7 25.0 2.054 25.5 30.8 25.2 1.957 35.5 30.8 25.2 2.023 22.7 22.7 25.5 22.8 2.023 22.7 22.7 25.5 22.8 2.023 22.7 22.7 25.5 22.8 2.023 22.7 22.7 25.5 22.8 2.023 22.7 22.7 25.5 22.8 2.023 22.7 22.7 25.5 22.8 2.035 22.7 22.7 25.5 22.8 2.037 16.8 - 23.9	NED ON		3		126 135 135 127	22 22 23 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25	128.5 128.5 138.5 138.5	82 83	8888.
1.932 24.0 24.3 27.5 2.106 1.914 25.7 24.0 24.3 27.5 2.106 17.5 19.2 24.0 24.3 27.5 2.106 17.5 19.2 24.0 24.3 27.5 2.106 17.5 19.2 24.0 24.3 27.5 2.106 17.5 19.2 24.0 24.3 27.5 2.106 17.5 19.2 24.0 24.3 27.5 2.106 17.5 19.2 27.1 26.7 2.106 17.5 19.2 27.0 26.7 2.106 17.5 19.3 27.2 27.0 26.7 2.106 17.5 19.2 27.0 26.7 2.106 17.5 27.5 27.0 26.7 2.106 17.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 2	MEASU		5	136.5	127 127 138 138 122	128 136 136 118	25 T T T T T T T T T T T T T T T T T T T	323522	22222
Vol. 1,932 24.0 2.196 2.196 2.197 2.4.0 2.196 2.197 2.106 2.197 2.			CSF	4.4	23.7	25.0	22.8	22.5	7.11
Vol. 1,932 24.0 2.196 2.196 2.197 2.4.0 2.196 2.197 2.106 2.197 2.		#VL	g	27.5 27.5 26.8	22.4	26.7	23.5	3.1	26.5
1. 932 2. 342 2. 343 2. 343 2. 343 2. 343 2. 343 2. 343 3. 344 3. 343 3.		(HCO3).	9	24.3 24.5 19.2 19.1 26.8	25.3 19.5 19.7 27.2	25.5 25.5 30.8	22.6		22.8 22.8 17.0 17.0 27.0
			5	24.0 24.0 17.5 17.5 27.1	25.7 25.7 17.7 17.7 29.3	25.2 25.2 18.2 18.2 35.5	22.7 22.7 16.8 16.8	24.4 24.4 25.5 25.5 27.7	22.9 22.9 15.7 15.7 28.1
Y, M, Min. M, Min. M,		•>°	nia/la	1.932 2.342 2.106 2.107 2.255 2.171	2.007 1.876 2.053 1.831 1.855	1.888 2.054 1.923 2.001 1.872	2.023 2.017 2.017 2.018 2.088 2.075	0.733 0.877 0.753 0.768 0.709	2.030 2.028 2.028 2.038 2.038
				969999	1.738 1.738 1.738 1.738 1.738	222222	2.047 2.047 2.047 2.047 2.047	0.745 0.745 0.745 0.745 0.745	2.030 2.030 2.030 2.030 2.030
Collection Period with Sec. 185.35 18		Collection	min: sec	15:13 15:12 15:11 15:07 15:10	1818 1818 1818 1818 1818 1818 1818	15:11 15:08 15:03 15:16 15:15	15:09	15:07 15:20 15:04 15:23 15:42 14:40	15:03 15:07 15:07 15:02 15:16
S 8 A 8	- 1								

V. Fencl, R.A. Gabel, and D. Wolfe: Composition of cerebral fluids in goats adapted to high altitude.

HIGH ALTITUDE

1	ate	E A	1.7.	-1.30 -1.20 -1.03 -1.19	-1.18 -1.84 -1.54 -1.00 -2.62			
CALCINATED QUANTITIES	Lactate	HY SE	1.10	1.30	0.90 0.99 0.99 0.95	0.72 0.72 1.00 1.00 1.00		
		Fig		-0.9 -0.2 -2.6 -2.1		22.9	.3.75	ļ.3 ļ
	-0	H,0 kg		121.2 121.2 122.8 122.8 123.6	121.2 121.2 122.7 122.7 123.6	119.9 119.9 119.4 119.4	117.2	119.3 119.3 119.3 119.3 119.3
		Ci-Ccsf	. 7. 5 2.7. 5 5. 5	4.2. 4.5. 4.7. 4.7.	9	-2.0 -2.0 -6.5 -8.0 -8.0		2.0 2.0 2.0 11.0
NOW		Hux Min		4.3	• 5.9 • 6.9 • 7.9 • 7.6	5.5. 4.6. 5.5.	.5.1	. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.
	HCO.	F. Skg	23.5	23.2	23.3 22.0 22.0 23.3 23.3	22.7 22.7 21.7 21.7 20.2	22.1 22.1 21.0 21.0 20.2	23.2
		Cj-Ccsf mWkg H20	1.1.1.2.5.4.6.8.7.8.7.8.	**************************************	\$ 5.0 5.0 5.0 5.0 5.0 5.0 5.0	4.4.4. 6.6. 6.0. 6.0. 6.0.	11111. 88.77.88	.5.2 .4.2 .8.5 .8.5
	CIn	un/mu	0.172 0.350	(1.277 (1.201 (1.312 (1.204 (1.944	C.638 C.585 C.545 C.642 C.941	C.138 0.050 0.040 C.033 C.070	0.115 0.238 0.145 0.163 0.154	0.433 0.170 0.392 0.252 0.160 0.207
1	57	9	768 760 732	770 738 774 802 816	720 736 792 778 768	1197 1203 1145 1175 1087	588 588 - 612 570 577	1145 1212 1031 1096 1133
	Inulin cpm/ml	5	864 880	988	1058 1074 954	1283 1189 1097	646 638 619	1274
	m/VL	cist CSF	3.98	4.32	3.94	4.46	4.4	
	acta	c whole blood	0.9	0.9	0.72	0.80		
		9	1.45	1.66	1.54 1.64 1.58 1.41 2.36 2.17	1.39		
		cist CSF	129.5	130.4	128.8	132.0	130.0	131.0
	[C1-], mN/L	сb	110.8	110.7	112.7	111.5 111.0	0.001	111.0
ES		S	134 133.5	127.5 127 132 132.5		130 130 134.5 134.5	129.5 129 135	128.5
MEASURED QUANTITIES		5	137 137 120	128 128 136 136	127 135 138 124 124	130 136.5 136.5	130 130 137.5 137.5 124	129 129 138 120 120
ASURED		cist	20.8	19.9	19.7	18.4	18.5	20.1
NO.	[HOD]], mVL	9	21.9	21.6	20.5	20.2	20.6 19.6 18.8	20.65
	[HCD]	S	16.2 16.3 25.0	21.9 21.8 17.1	21.5	20.9 20.8 15.5 24.2 24.5	19.1 14.25 23.5	26.4
		J	21.9 21.9 15.4 15.4 29.5	24.0 24.0 15.6 15.6 28.1	24.7 24.7 17.6 17.6 28.1	22.5 22.5 15.2 15.2 27.4	20.3 20.3 14.3 14.3 26.3 26.3	23.3 23.3 15.9 15.9 28.6 28.6
	ی	ml/min	1.813 1.656 2.020	1.719 1.882 1.912 1.950	1.902 1.901 1.800 1.744 1.246 0.769	2.049 2.127 2.080 2.097 1.989 1.649	2.009 1.996 2.014 1.973 2.045	1.332 1.970 1.830 1.338 1.872 1.571
		ml/min	1.735 1.735 1.735 1.735 1.735	1.743 1.743 1.743 1.743	1.729 1.729 1.729 1.729 1.729 1.729	2.040 2.040 2.040 2.040 2.040 2.040	2.033 2.033 2.033 2.033 2.033 2.033	2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0%
	Collection	min:sec	20:11 16:14 18:50	18:06 15:18 15:04 15:02 21:19	15:03 15:03 15:09 15:04 13:58	15:05 15:00 15:20 15:10 15:08 14:57	14:41 14:55 14:49 14:30 14:57 15:03	14:58 14:58 15:94 15:91 15:91
	3		€	¥	8	S	2	5